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Abstract The relationship between heterozygosity at 
neutral marker loci and heterosis of F 1 hybrids is inves- 
tigated using a theoretical model. Results emphasize 
that linkage disequilibrium between the markers and the 
loci implicated in heterosis l-quantitative trait loci 
(QTLs) that exhibit dominance effects] is a necessary 
condition to finding a correlation (Pmh) between hetero- 
zygosity at marker loci and the heterosis. The effect of 
population structure, in which the parental inbred lines 
of the hybrids belong to different heterotic groups, is 
considered. Prnh is investigated for: (1) hybrids between 
lines that belong to the same heterotic group (within- 
group hybrids); (2) hybrids between lines that belong to 
different groups (between-group hybrids); and (3) all 
hybrids, both within and between-groups. Within a 
group, significant values of (Pmh) may arise because of 
linkage disequilibrium generated by drift. At the be- 
tween-group level, no correlation is expected since link- 
age disequilibrium should differ randomly from one 
group to the other, which is consistent with recent 
experimental results. Possible ways to achieve pre- 
diction of the heterosis in this situation are discussed. 
When all hybrids are considered simultaneously, diver- 
gence of alMic frequencies among groups for the mar- 
kers and the QTLs produces a correlation between 
heterosis and heterozygosity at marker loci. This corre- 
lation increases with the number of markers that are 
considered. 
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Introduction 

When introducing the basic concepts of hybrid breed- 
ing, Shull (1908) noted that finding a suitable method to 
predict hybrid performance before field evaluation 
would considerably increase the efficiency of maize 
breeding programs. Experimental studies (see Moll et al. 
1965) illustrated that midparent heterosis could be re- 
lated to genetic divergence, a relationship that was 
supported by quantitative genetics theory (Falconer 
1981). On the basis of these results, the efficiency of 
several distance indicators for predicting either heterosis 
or hybrid value was evaluated. 

Special interest was devoted to genetic markers, first 
using isozyme data, and then molecular markers. The 
results obtained using isozyme data were reviewed by 
Stuber (1989). Distances computed from isozyme data 
were in some cases significantly correlated to heterosis, 
but the correlations were generally too low for the 
distances to be of practical predictive value. Insufficient 
genome coverage, due to the low number of marker loci, 
was a possible explanation for these results. Alternative 
molecular marker techniques, such as restriction frag- 
ment length polymorphism (RFLP) have been deve- 
loped over the last decade, (Beckmann and Soller 1983; 
Burr et al. 1983), and these provide a much higher 
number of genetic markers (up to 1000 in some major 
crops). The potential of this technique for prediction of 
either heterosis or hybrid value has been tested in several 
studies in maize since 1988 (Lee et al. 1989; Godshalk 
et al. 1990; Melchinger et al. 1990 a, b; Smith et al. 1990; 
Dudley et al. 1991; Melchinger et al. 1992; Boppenmeier 
et al. 1992; Charcosset 1992), with the results appearing 
to be highly dependent on the germ plasm involved in 
the study. A general tendency seems that the correlation 
between distances (computed using RFLP data) and 
hybrid value increases with the introduction of crosses 
between related lines in the germ plasm under study. 
This tendency was also pointed out for isozymes by 
Frei et al. (1986). This effect of relatedness is consistent 
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with results obtained by Stuber et al. (1992) that showed 
a strong correspondence between heterozygosity at 
marker loci and yield when backcross families were 
considered. 

The relationship between heterosis and heterozygos- 
ity at marker loci is also affected by the origin of the 
tested germ plam; i.e., the heterotic groups (e.g. Lancas- 
ter and Reid Yellow Dent for maize) to which the lines 
belong. Melchinger et al. (1992) concluded that: (1) 
RFLP distances should be useful for predicting hybrid 
value when considering diallels that involve lines that 
belong to a same heterotic group, or lines that belong to 
several heterotic groups, but (2) that RFLP distances 
would not be useful for predicting the value of crosses 
between lines that belong to different heterotic groups. 
This conclusion was confirmed by Boppenmeier et al. 
(1992). 

At the genetic level, several factors affect the relation- 
ship between marker distance and hybrid performance. 
Since markers are generally assumed to be neutral, 
linkage disequilibrium between markers and the loci 
involved in heterosis is a necessary Condition (Charcos- 
set et al. 1991). Other factors are related to: (1) the degree 
of dominance at the loci [quantitative trait loci (QTL)] 
involved in the variation of the quantitative trait of 
interest and (2) epistatic effects (Melchinger et al. 1990b). 
Apropos to previous results, elucidating the effect of 
population structure (i.e., the partition of inbred lines 
into groups on the basis of origins) on the relationship 
between distance and hybrid performance is essential to 
the stipulation of conditions under which marker-based 
prediction will be effective. Bernardo (1992) provided 
theoretical arguments on that issue using simulated 
data. The aim of this paper is to develop an analytical 
approach by extending the study of Charcosset et al. 
(1991). In the present study we will consider the follow- 
ing three cases: (1) diallels that involve lines belonging to 
the same genetic group, (2) factorial designs in which 
lines of a first group are crossed to lines of a second 
group, and (3) dialMs involving lines belonging to differ- 
ent groups. 

d z is the difference between the heterozygote phenotype 
(/1/2) and the average of homozygotes, i.e., the domi- 
nance effect. If the trait is controlled by nl loci acting 
independently (no epistasis), the phenotype of individual 
i (Y~) is (with C = Z~ '~ c~) written as 

nl 

Y~ = C + ~,  a,(Oi) + d,(1 - (Of)Z). (1) 
/=1  

Note that, when i is an inbred line homozygote for 
each QTL, its value (per se) reduces to: Y, = C + ~7~ 1 
alO I. The value of the F 1 hybrid between line i and linej is 

,z (01 + O{ ) d (1 2_010]). Yii = C + ~ a z - -  + (2) 
I~1  2 

Let Heij  be the difference between the hybrid value 
and the mean of the values of the parents (i.e., the 
heterosis), then 

- 0101)  (3)  H %  = ~ dl (1 2 
/=1  

Assuming that d I equals d whatever l (Vtd 1 = d), he- 
terosis is proportional to the average heterozygosity at 
QTL loci (Falconer 1981). Variation in d~ values will 
affect this relationship, as will be discussed further. 
Epistatic effects were not included in the model used for 
this study and deserve a specific analysis since they 
modify the relationship between heterosis and the aver- 
age heterozygosity at the QTLs. Crow and Kimura 
(1970, p 81) illustrated that, in the presence of epistatic 
effect, the relationship is no longer linear but gets cur- 
vilinear, with a concavity that depends on the type and 
magnitude of the epistatic effects involved. 

Since the average heterozygosity of a given hybrid 
can be estimated via marker loci analysis of parental 
inbred lines, under the hypothesis that this estimate of 
heterozygosity is proportional to the number of hetero- 
zygous QTL, average heterozygosity has been consi- 
dered to be a predictor of heterosis. 

Basis of the model 

Quantitative traits 

We shall assume a biallelic model to describe the 
phenotypic value of homozygous inbred lines and their 
hybrids, following the notations used in a previous 
paper (Charcosset et al. 1991). Using the notation of 
Hayman (1954), the genotype of individual i at locus 1 
(with alleles l I and 12) is represented by the variable 01, 
which takes the value + 1, 0, - 1 for genotypes l l l l ,  l~12, 
and 1212, respectively. The single-locus model for the 
phenotypic value of individual i is written as 
Yi = Cl + alOi + dl (1 -- (01)2), where c l is the average value 
of homozygotes l l l  1 and 1212, a l is half the difference 
between the homozygotes Ill  I and 12l 2 phenotypes, and 

Heterozygosity at marker loci 

When np marker loci are available, distances between 
inbred lines i and j can be computed using well-known 
formulas, such as M R D  2 (Rogers 1972). If inbred lines 
are homozygous for all loci (which will be assumed in 
this study), this distance is an estimate of the average 
heterozygosity of the hybrid between lines i and j and 
will be designated M D i j  (for marker distance). For a 
given marker locus (p), variable O r takes values - 1, + 1 
for genotypes PlPl  and P2P2, respectively. Following 
that notation, 

OvOp) (4) MD,j=y; I(1- ' j 
2np 
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Note that this model is adapted to describe situations 
in which more than two alleles are detected at marker 
loci (which is a general situation for RFLPs in maize). In 
this case, variable 0~o is defined for allele a of locus p, 
taking the value i if the inbred i carries allele p,, and - 1 

if not. If na is the total number of alleles found over the 
np marker loci, MDij ~pa = 1 (1 i j = na  - -  OpOp~)/4np. 

Genetic parameters of the reference population 

We will assume that the homozygous inbred lines be- 
long to a reference population (i.e., a set of inbreds of 
infinite size). We will define wz as the mean of 01 in this 
population. The frequency of the allele 11 in the popula- 
tion is: f~ = (1 + wi)/2. Genetic diversity (Nei 1973) at 
locus l (Hi) is proportional to the variance of 01: 
H l = vat(Of)~2 = (1 - w2)/2. The linkage disequilibrium 
between alleles 11 and kl at loci I and k is proportional to 
the covariance between variables 01 and 0~,: D~k = 
coY(Of; 0~)/4. As was discussed by several authors (see 
Roughgarden 1979, p 113) the name linkage disequilib- 
rium may be misleading in that sense that D~k is not 
necessarily due to linkage, as will be discussed further. 
However, linkage disequilibrium is the name that is the 
most commonly used for the statistical association be- 
tween two alleles, so it will be used to refer to Dtk in the 
following text. 

To investigate the effect of population structure, we 
will consider that the population (or metapopulation, 
following the terminology of population genetics) is 
divided into several subpopulations, as is the case when 
the population is divided into several (ng) heterotic 
groups. These subpopulations will be designated as (G1, 
G2... Gng). Previously defined population parameters 

w o cg H~ can be defined for each subpopulation (g) as ~,j~, 
and Dfk. The relative size of group 9 is defined as 
L (ZT= 1L = 1). 

Relationship between heterosis and heterozygosity at 
marker loci in diallel mating designs 

Variation within a diallel is partitioned (Griffing 1956) 
a s  

Y~j = # + GCA~ + GCAj + SCAij, (5) 

where Y~j is the value of the hybrid between inbreds i and 
j, # is the mean over the hybrids, GCA~ and GCAj are the 
general combining ability of inbreds i and j, respectively; 
SCAi~ is the specific combining ability of the hybrid ij, 
i.e., the specific heterosis (Gardner and Eberhart 1966). 

When Griffing's (1956) method I is used (this method 
leads to simplified calculations and doesn't affect the 
results, since the size of the population is supposed to be 
infinite), the specific combining ability between lines i 
and j is 

1 nz i 
SCA~j = ~ 1~=1 dt(Ot - wt) (w~ - Ol). (6) 

Application of model (5) to marker distance (MD) 
(Melchinger et al. 1990b) provides a quantity expressing 
the specific marker distance (SMD) between inbreds i 
and j: 

SMDij = ~finp pL 1= (Op - Wp)(Wp - 0~). (7) 

In the present study, we will analyze the relationship 
between Heij and MD~j through the investigation of the 
relationship between SCAij and SMD~j. This is justified 
because SCA is the most important component of he- 
terosis concerning the relationship with marker infor- 
mation, since other components of heterosis [or general 
heterosis according to Gardner and Eberhart (1966)] 
can be predicted using top-cross designs (Sprague and 
Tatum 1942). Given that SCA is the relevant component  
of heterosis it seems natural to regard SMD as the 
relevant component  of marker distance. The calculation 
of the correlation between SCAij and SMDij (p(SCA~j; 
SMD~j)) requires three components: cov(SCA~j; SMD~j), 
var(SCAij), and var(SMD O. The variance of SCAij (see 
Appendix) is 

nl nl  nl  

var(SCAij )= ~ d2H 2 + 4  Z Z dkdtD2k �9 (8) 
k = l  k =  l l =  l , l ~ k  

Equation 8 shows that the variance of specific com- 
bining ability depends on the diversity at the QTLs and 
linkage disequilibrium between the QTLs. If d~ is greater 
than 0 at all loci (l), linkage disequilibrium will tend to 
increase the variance of SCA. Similarly, 

1 ~ 2 4 ~ np 
var(SMDi~)--'q27"2pLlnp+'qZ2"2)-"l,,e = ,,e p:- q=l,qep2 D2q, (9) 

and 

4 .z np 
c~ SMDij) = ~ Z Z dk Dk 2" (10) 

P k = l p = l  

Equation 10 illustrates that linkage disequilibrium 
between neutral markers and QTLs is a necessary con- 
dition for correlation between heterosis and hetero- 
zygosity at marker loci. Several aspects of this problem 
were discussed in a previous paper (Charcosset et al. 
1991), under the assumption that inbred lines were 
derived from a population that had undergone random 
mating for a given number of generations after founda- 
tion. The results indicated that the relationship was 
expected to be at a maximum in the first generations, 
which is consistent with the high values of the correla- 
tion reported by Stuber et al. (1992) for backcross fami- 
lies derived from a cross between two inbred lines. 

If (1) dominance is constant across all QTLs, 
(2) diversity is the same for all the loci (QTLs and 
markers), (3) there is no linkage disequilibrium between 
the QTLs, (4) there is no linkage disequilibrium between 
the marker loci, and (5) linkage disequilibrium between 
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a QTL and a given marker is either maximum 
(D 2 = H2/4) or zero, 

p2 (SCA~j; SMD~;) = (% MQ TL) (% QAM), (11) 

where % M Q T L  is the proport ion of the QTLs marked 
by a marker (i.e., associated with a marker) and % QAM 
is the proport ion of the markers associated with a QTL. 
This clearly illustrates that heterosis estimates based on 
marker heterozygosity will be inflated by heterozygous 
markers unassociated with QTLs [dispersed markers, 
Bernardo (1992)]. On the other hand, if heterotic QTLs 
are unassociated with markers, heterosis will be under- 
estimated by estimates based on marker heterozygosity. 
Thus, dispersed markers and unmarked QTLs play 
symmetric roles. 

The correlation between SCA and SMD is also af- 
fected by the variation of the dominance effect across the 
QTLs. If one assumes that (1) diversity is the same for all 
the QTLs, (2) there is no linkage disequilibrium between 
the QTLs, (3) each QTL is associated with a single 
marker with maximum linkage disequilibrium (D2= 
H2/4), and (4) there are no dispresed markers, the corre- 
lation is inversely related to the variation of d~ across the 
QTLs: p2(SCAij;SMDij)= 1/(1 + ~ ) ,  where mean d 
and vard are, respectively, the mean an~d the variance of 
d I across the QTLs. 

Relationship between heterosis and heterozygosity at 
marker loci in factorial mating designs (between- 
groups' hybrids) 

When lines of a given group (G1) are crossed to lines of 
another group (G2), in a factorial design (also called 
design II by Hallauer and Miranda 1988), variation can 
be partitioned via the model 

Y,j  = +GcAt + ccAy + SCAy, (12) 

where Y~J 2 is the value of the hybrid between inbred i in 
group G1 and inbredj  in group G2, g is the mean over 
the hybrids, GCA] is the general combining ability of 
inbred i in group G1 with the inbreds of group G2, GCA 2 
is the general combining ability of inbredj  in group G2 
with the inbreds of group G1; SCA~ 2 is the specific 
combining ability of the hybrid ij. 

As in the case of the diallel, model 12 can be applied 
both to the quantitative trait of interest and the marker 
distance between lines i andj .  The values of SCA~ 2 and 
SMDlij 2 are 

SCA~j2 1 ,a i 0 ~ =Sz~= 1 dt(O~- w])(w~ -- ,), (13) 

and 

Similarly, the components of the correlation between 
SCAlis 2 and SMD~ 2 are 

nl nl nl 
var(SCA~i:) = ~ "]2 rJgl  It-/g2 i A g l  g2 ~k::k ":k --~ ~ ~ dkdlDlk Dtk 

k =  1 k =  1 I= 1,1:/-k 

(15) 

np np np 

var(SMD~j2) = E H~IH~ 2 + 4  ~ E --pql)OlDg2--vq (16) 
p = l  p= l  q = l , q @ p  

nl np 

c~162162 =4 Z Z '~k • ~k~,nol rloZ~.kp (17) 
k = l p = l  

Formula 17 illustrates a major difference between the 
diallel and factorial mating designs. In the diallel design, 
the covariance between SCA and SMD involves the 
square of linkage disequilibria between marker loci and 
QTLs so that any disequilibrium contributes positively 
to the correlation between SCA and SMD. For factorial 
designs, the covariance is the product of the disequilibria 
observed in the two groups. Thus, disequilibria of oppo- 
site sign in the two populations will contribute in a 
negative way to the correlation, as was pointed out 
by Melchinger (1991, unpublished data reported by 
Boppenmeier et al. 1992). 

The effect of germ plasm structure on the relationship 
between heterosis and heterozygosity at 
marker loci in diallel designs 

Diallels often involve lines that represent different he- 
terotic groups. Thus, these designs can be considered as 
a mixture of within-group dialMs and factorial designs 
(between-groups' hybrids). We will consider a popula- 
tion of inbred lines subdivided into ng groups. Follow- 
ing an approach similar to that of Ohta (1982), linkage 
disequilibrium can be partitioned as 

D _ ng g 1 ng 
(18) 

Equation 18 illustrates that linkage disequilibrium is 
the result of two kinds of effects: (1) the pooled within- 
population disequilibria (over the groups) and (2) the 
divergence of the groups for alMic frequencies as 
( w f -  w,) is equal to twice the difference between the 
frequency of allele 11 in group 9 and its frequency in the 
metapopulation. 

To illustrate the effect of allelic divergence of the 
groups on the correlation between SCA and SMD, we 
will consider the case of no linkage disequilibrium with- 
in each population (i.e., each group is at linkage equilib- 
rium) and only two populations equal in size. Then, 

1 1 Dlk = G(w~ - w~ 2) (w~ 1 - w~ 2) 

1 np 
= -- wv)(wp -- O J). (14) SMD~; 2 ~ ~ (0~ ' 2 

p = l  

1 gl 
d l l  I t d k l  --fkg12)" (19) 
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Following Eq. 10 the covariance between SCA and 
SMD is 

@p nl np 
c~ ~, Z d,(fl~ 1 -J11c02~2:r tJpl _fff2)2. 

/ = l p = l  (20) 
Assuming that all QTLs have the same dominance 

effect (Vld l = d), Eq. 20 is expressible as a function of the 
divergence of the allelic frequencies between the popula- 
tions at the QTLs (Aq = 1/nlYYll=l(fl~ 1 --fl~z) 2) and the 
marker loci (Am = 1/np2"pP=l (fpo: _ff12)2), 

nld 
Cov(SCAij; SMDij) = ~ -  AoAm. 

Equation 21 illustrates that the diversity in allelic 
frequencies between the populations at the markers and 
the QTLs will tend to generate linkage disequilibria 
between marker loci and QTLs, even if those are not 
physically linked, thereby generating a correlation be- 
tween SCA and SMD. 

The diversity at locus I can be written: H t -  �89 1 - 
W~2)/2) 2 -'}- �89 - ((W~l) 2 "q- (W02)2)/2) = �89 I + Hi ,  where a l 
is the square of the differences in the allelic frequencies of 
groups G1 and G2 at locus l , / t  t is the average diversity of 
groups G1 and G2. Consequently, using Eqs. 8 and 19, 
var(SCA) becomes 

2 nl2 2 d 2 nl 
v a r  ( S C A l a )  = d ~-Aq + ~, Ht(H t + at). 

/ = 1  

Similarly, 

1 A2 + l p ~  H p ( H p + a p ) ,  
var  ( S M D i j )  = ~ 1 

Another way to derive the parameters Fq and Fm is to 
consider a variable Gt; such that G o = 0 ifinbreds i andj  
belong to the same group and G~j = 1 if they belong to 
different groups. It can be demonstrated that Fq = 
p(SCAij; Gij ). Thus, Fq is indicative of the accuracy of the 
prediction of SCA from the knowledge of the groups to 
which the inbreds belong. In a similar way, 
F m = p (Gij; SMDij ). Thus, F m is indicative of the accu- 
racy marker distance to determine if two inbreds belong 
or do not belong to the same group. 

To illustrate this result, we will consider that diversity 
and allelic divergence are the same for all the QTLs (i.e., 
VIH t = Hq, a l = aq) and for all the markers (i.e., VpHp = 

(21) Hm' ap = am). In this situation Fq 2 = (a2/(aq2(1 - 1/nl) + 
2 2 2 2 2 (4/nl)Hq)) and F m = (am/(a m (1 - 1/np) + (4/np)Hm)). 

Table 1 shows the values of F 2 = a2/(62(1 - 1/n) + 
(4/n)H 2) for various values of the allelic frequencies in 
groups G1 ( f l )  and G2 (f2), under the hypothesis that all 
loci exhibit the same diversity and divergence. The value 
of F increases with the divergence of the populations 
(If1-f2D. For a given divergence, F increases as the 
average within-group diversity decreases and is maxi- 
mum at fixation for either population. For given values 
of the diversity and divergence, F increases with the 
number ofloci that considered. Table 1 allows computa- 
tion of the fraction of the variance of specific combining 
ability that is accounted for by the heterozygosity at 
marker loci under various hypothesis concerning the 
number of loci, the diversity and the divergence of the 

(22) groups for the markers, and the QTLs. It illustrates that 
the divergence of the groups can generate high correla- 
tion values, especially if the number of marker loci that 
are considered is important. 

(23) 

and the correlation between SCA and SMD becomes 
p(SC A~fi S M Dij ) = FqFm, with 

Fq = Aq 
4 ~ 

ag + ~ H,(H, + 3t) 
t = l  

and 

A m  Fm=x/A +4 "P 
2 ~ Hp(Hp + 6v) 
,n riP 2 p= 1 

The fraction of the variance of specific combining ability 
that is accounted for by the heterozygosity at marker 
loci is 

p 2 (SCAij; SMDij) = F 2 F 2. (24) 

Since Hz(H t + at) = H~ - �88 2 gq. (24) illustrates that 
the magnitude of the relationship between SCA and 
SMD depends on the degree to which diversity in both 
markers and QTLs is distributed between groups. 

Discussion and conclusion 

Supposing that markers such as RFLPs and isozymes 
are neutral [i.e., have no direct effect on the trait(s) of 
interest], then they must be in linkage disequilibrium 
with QTLs to have a predictive value. This is illustrated 
by formula 11 using simplifying assumptions: if 50% of 
the markers are dispersed and 50% of the QTLs are 
unmarked, the fraction of the variance of SCA that is 
accounted for by heterozygosity at marker loci will not 
exceed 25%. In addition to linkage disequilibrium par- 
ameters, the correlation between heterosis and hetero- 
zygosity at marker loci is affected by the genetics of the 
trait of interest. Variation in the value of the dominance 
effect across the QTLs and epistatic effects contribute to 
diminish the correlation and deserve further investiga- 
tions. However, linkage disequilibrium is the key par- 
ameter by which to investigate the effect of population 
structure on the effectiveness of prediction. Concerning 
linkage disequilibria between markers and QTLs for 
structured populations, two parameters are paramount: 
(1) linkage disequilibrium within the heterotic groups of 
interest and (2) divergence of the groups in allelic fre- 
quencies. 



Table I Values of parameter F2 for given allelic frequencies in groups 
G1 (f  1) and G2 (f2), and two number ofloci (n = 10 and n = 100), The 
fraction of the variance of specific combining ability (SCA) which is 
accounted for by the heterozygosity at marker loci (SMD) is: p2 (SCA; 
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2 2 2 2 SMD) = Fq F,,, where parameters F a and F m are defined for the QTLs 
and the marker loci, respectively. (n~ F 2 undefined due to the absence 
of diversity) 

n = 10 f2 

fl  0.0 0.1 0.2 0.3 0.4 
0.0 nd 0.027 0.111 0.243 0.400 
0.1 0.027 0.000 0.004 0.038 0.127 
0.2 0.111 0.004 0.000 0.002 0.022 
0.3 0.243 0.038 0.002 0.000 0.001 
0.4 0.400 0.127 0.022 0.001 0.000 
0.5 0.556 0.274 0.090 0.017 0.001 
0.6 0.692 0.449 0.222 0.077 0.016 
0.7 0.803 0.621 0.405 0.208 0.077 
0.8 0.889 0.764 0.598 0.405 0.222 
0.9 0.953 0.874 0.764 0.621 0.449 
1 1.000 0.953 0.889 0.803 0.692 

0.5 0.6 0.7 0.8 0.9 1 
0.556 0.692 0.803 0.889 0.953 1.000 
0.274 0.449 0,621 0.764 0.874 0.953 
0.090 0.222 0.405 0.598 0.764 0.889 
0.017 0.077 0.208 0.405 0.621 0.803 
0.001 0.016 0.077 0.222 0.449 0.692 
0.000 0.001 0,017 0.090 0.274 0.556 
0,001 0.000 0,001 0.022 0.127 0.400 
0.017 0.001 0,000 0.002 0.038 0.243 
0.090 0.022 0.002 0.000 0.004 0.111 
0.274 0.127 0.038 0.004 0.000 0.027 
0.556 0.400 0.243 0.tll 0.027 nd 

n = 100 f2 

f 1 0.0 0.1 0.2 0.3 0.4 
0.0 nd 0.217 0.556 0.763 0.870 
0.1 0.217 0.000 0.037 0.282 0.594 
0.2 0.556 0.037 0.000 0.017 0.185 
0.3 0.763 0.282 0.017 0.000 0.012 
0.4 0.870 0.594 0.185 0.012 0.000 
0.5 0.926 0.790 0.497 0.148 0.010 
0.6 0.957 0.891 0.741 0.455 0.138 
0.7 0.976 0.942 0.872 0.724 0.455 
0.8 0.988 0.970 0.937 0.872 0.741 
0.9 0.995 0.986 0.970 0.942 0.891 
1 1.000 0.995 0.988 0.976 0.957 

0.5 0.6 0.7 0.8 0.9 1 
0.926 0.957 0.976 0.988 0.995 1.000 
0.790 0.891 0.942 0.970 0.986 0.995 
0.497 0.741 0.872 0.937 0.970 0.988 
0.148 0.455 0.724 0.872 0.942 0.976 
0.010 0.138 0.455 0.741 0.891 0.957 
0.000 0.010 0.148 0.497 0.790 0.926 
0.010 0.000 0.012 0.185 0.594 0.870 
0.148 0.012 0.000 0.017 0.282 0.763 
0.497 0.185 0.017 0.000 0.037 0.556 
0.790 0.594 0.282 0.037 0.000 0.217 
0.926 0.870 0.763 0.556 0.217 nd 

Linkage disequil ibrium within heterot ic  groups  

Linkage disequil ibrium within a g roup  is related to the 
his tory of the group.  In  maize, ma jo r  heterot ic  groups  
such as Reid Yellow Dent ,  Lancaster ,  and European  
Flint  have been created f rom tradi t ional  popula t ion  
varieties. Fi rs t -generat ion inbreds extracted f rom these 
popula t ions  were then intercrossed to generate second- 
and further  genera t ion inbreds (Hal lauer  1990). Thus,  
l inkage disequil ibrium within a g roup  could have ap- 
peared  in: (1) the f irs t-generat ion inbreds or (2) during 
the der ivat ion of subsequent  cycle inbreds. The disequi- 
l ibr ium in f irst-generat ion inbreds is founded upon  dis- 
equi l ibr ium in the source populat ions .  

Linkage  equi l ibr ium of the source popula t ion  is ex- 
pected if ma t ing  has been nearly panmict ic  for m a n y  
generat ions (cf. Charcosse t  et al. 1991). Exper imenta l  
evidence indicates that  na tura l  a l logamous  popula t ions  
are close to l inkage equil ibrium (Hastings 1989). Link-  
age disequil ibrium in the source popu la t ion  is expected 
if the popua l t ion  has been created recently th rough  
hybr idizat ion or has passed th rough  a bot t le-neck gen- 
erated by severe selection pressure,  or more  likely, by 
r a n d o m  drift due to limited popula t ion  size. I f  l inkage is 
tight, bot t le-neck effects can be main ta ined  for a ra ther  
long per iod of t ime (Avery and Hill 1978). Significant 
l inkage disequil ibrium between isozyme loci in tradi-  

t ional  maize popula t ions  was repor ted  by Garnier-G6r6 
(1992). 

If  the source popula t ion  is in l inkage equilibrium, 
disequil ibrium between markers  and Q T L s  can be ran- 
domly  generated by a bot t le-neck if the numb er  of 
f irst-generation inbreds is small. If  the source is in 
disequilibrium, disequil ibrium between markers  and 
Q T L s  in the set of f irst-generat ion lines is no longer 
generated at r a n d o m  but  depends on the disequil ibrium 
within the initial populat ion.  

Linkage disequil ibrium can also arise during subse- 
quent  breeding after the f irst-generat ion inbreds have 
been derived. The history of the BSSS synthetic is 
illustrative. Smith (1983) and Helms  et al. (1986) empha-  
sized the impor tance  of genetic drift over  selection 
cycles. Helms et al. (1989) concluded that  changes in 
allelic frequencies were due most ly  to r a n d o m  drift. I f  so, 
l inkage disequil ibrium should have been generated con- 
comitantly.  In the case of European  maize germ plasm, 
the European  Flint  heterotic g roup  has been generated 
mainly  f rom three first-generation inbreds (lines F2, F7, 
and EP1) and has undergone a m a x i m u m  of four subse- 
quent  generat ions of  line development .  Linkage disequi- 
l ibr ium between isozyme alleles Mdh5-15 and Pgm2-a 
is evident in the derived germ p lasm (Bar-Hen et al. 
submitted). These two examples suggest that  l inkage 
disequilibria should generally exist within groups.  I f  so, 
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marker-based prediction of heterosis should generally 
be effective within heterotic groups. 

Linkage disequilibria within different heterotic groups 

If random effects play an important role in the origin of 
linkage disequilibrium, linkage disequilibrium between 
markers and QTLs should differ randomly among 
groups (Lewontin 1974). Striking differences between 
maize populations for disequilibrium between isozyme 
alleles have been reported by Garnier-G&6 (1992). Simi- 
larly, Bar-Hen et al. (submitted) reported differences for 
the sign and the magnitude of the disequilibria between 
isozyme alleles in different groups of maize inbred lines. 
Thus, in accordance with formula 17, prediction of 
performance of hybrids between lines belonging to dif- 
ferent groups on the basis of heterozygosity at neutral 
marker loci will not be effective. This conclusion is 
consistent with experimental results by Melchinger et al. 
(1992) and Boppenmeier et al. (1992). 

The effect of groups allelic divergence 

A1Mic divergence among groups at the marker loci and 
the QTLs produces linkage disequilibrium between 
marker loci and QTLs involved in SCA (Eq. 19). This 
generates a correlation between SCA and heterozygosity 
at marker loci (Eq. 21) when considering simultaneously 
between-groups' and within-groups' hybrids. Effective 
exploitation of this phenomenon depends on: (1) prior 
knowledge of SCA among the groups and (2) the ability 
to determine group membership of parental inbreds. 

Concerning (1), specific heterotic groups have been 
classified on the basis of between-groups' heterosis. Thus, 
these groups should differ for their allelic frequencies at 
the QTLs that exhibit dominance effects. The divergence 
should be accentuated between groups that have under- 
gone reciprocal recurrent selection. Experimental evidence 
on the magnitude of SCA variation that can be account- 
ed for by the partition of the inbreds into heterotic groups 
would aid in understanding the basis of the relationship 
between heterosis and heterozygosity at marker loci. 

Concerning (2), differentiation of groups at marker 
loci has been reported by several authors (Godshalk 
et al. 1990; Messmer et al. 1992; Livini et al. 1992). All 
concurred positively regarding the possibility of using 
marker analysis to assign inbreds to heterotic groups. 
Group differentiation can be generated by random drift, 
as was discussed previously, or by reciprocal recurrent 
selection because of the linkage drag between markers 
and QTLs (i.e., hitchhiking effect). 

The efficiency of the markers to assign inbreds to 
heterotic groups can be estimated through parameter 
F m (see Eq. 24). Table 1 illustrates that, for given fre- 
quencies, Fm increases with the number of markers that 
are considered. However, differentiation of the groups 
depends on the specific markers that are considered. The 
parameter F m could be used as a criterion to determine 

the optimum combination of markers that should be 
considered for distance computation. 

Conclusions 

Linkage disequilibrium between markers and QTLs 
should be generally expected in most populations. Thus, 
this necessary condition for prediction efficiency should 
be fulfilled at the within-group level and at the general 
level (provided a differentiation of the groups). However, 
the fact that linkage disequilibria between markers and 
QTLs generally differ randomly from one heterotic 
group to the other suggests that distances based on 
neutral marker loci will not be predictive of the perform- 
ance of between-groups' hybrids, which is consistent 
with results from the studies of Melchinger et al. (1992) 
and Boppenmeier et al. (1992). 

Several effective prediction methods may be possible. 
Heterozygosity at marker loci will be predictive only if 
linkage disequilibria between the markers and the QTLs 
are similar in the groups of interest. The mapping of 
QTLs involved in heterotic response (Stuber et al. 1992) 
should identify predictive markers. An alternative 
would be to use non-neutral genetic markers (Leonardi 
et al. 1991). Of course, probes specific to the genes 
involved in heterotic response are the ultimate solution. 

Another possibility, which may be more readily ap- 
plicable, could be to reconsider the statistical model that 
is used for prediction. At the within-group level, markers 
appear to be a powerful tool to estimate the genetic 
similarity between inbreds. Thus, if two lines that belong 
to the same heterotic group are close at the marker level, 
they should display similar SCA values (with testers of 
complementary groups). Thus, a possible scheme would 
be: (1) build a factorial design to determine the SCA 
values for a set of hybrids between lines that represent 
one group (set Refl) and lines that represent another 
group (set Ref2); (2) use markers to estimate the similar- 
ity between the lines that belong to group 1 and the lines 
of set Ref 1, the similarity between the lines that belong 
to group 2 and the lines of set Ref2; (3) develop an index 
function that includes Refl x Ref2 SCA estimates and 
similarity estimates to predict the SCA of Group 
1 x Group 2 hybrids. 

Appendix: derivation of var(SCA~j) 
var  (SCA~j )  can be wri t ten as a sum of expectat ions (over the hybrids): 

var  ( S C A I j )  = E ( S C A i j )  2 

1 nl nl 

= 4k 1 l dkd  - wk) (wk - Col - (w,  - 

Since we assumed t.hat the diallel was complete, for any locus l, the 
two variables O* t and 0~, are independent .  Thus  we have: 

1 nI nI 

var  ( S C A i j )  = ; k•l= Z 2-1 dk d~ E 2 ((0~ - -  wk ) (0  i - -  wl) ) (26) 
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1 nl 
2 2 i 

var (SCAo) = ~ k~ '= d k E ((O k - Wk) 2) 

1 nl nl 

dkdtE ((Ok -- Wk) (Or -- Wt) ) 
Y 2 ,  i 

k = 1 , = 1 , lg :k  

nl nl nl 

= dk/-/k + 4  ~" Z dkd,D, 2 var(SCAij)  W~ 2 2 
k - 1  k = l  l - l , ' # k  

(27) 

(28) 
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